Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback.
نویسندگان
چکیده
We report the synthesis of a nearly single-cycle (3.7 fs), ultrafast optical pulse train at 78 MHz from the coherent combination of a passively mode-locked Ti:sapphire laser (6 fs pulses) and a fiber supercontinuum (1-1.4 μm, with 8 fs pulses). The coherent combination is achieved via orthogonal, attosecond-precision synchronization of both pulse envelope timing and carrier envelope phase using balanced optical cross-correlation and balanced homodyne detection, respectively. The resulting pulse envelope, which is only 1.1 optical cycles in duration, is retrieved with two-dimensional spectral shearing interferometry (2DSI). To our knowledge, this work represents the first stable synthesis of few-cycle pulses from independent laser sources.
منابع مشابه
Optical Frequency Combs: From Frequency Metrology to Optical Phase Control
The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible and near-infrared frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of a “femtosecond optical-frequency comb generator” with a regular comb of sharp lines with well-defined f...
متن کاملColloquium: Femtosecond optical frequency combs
Recently there has been a remarkable synergy between the technologies of precision laser stabilization and mode-locked ultrafast lasers. This has resulted in control of the frequency spectrum produced by mode-locked lasers, which consists of a regular comb of sharp lines. Thus such a controlled mode-locked laser is a ‘‘femtosecond optical frequency comb generator.’’ For a sufficiently broad com...
متن کاملControl of coherent light and its broad applications
A remarkable synergy has been formed between precision optical frequency metrology and ultrafast laser science. This has resulted in control of the frequency spectrum produced by mode-locked lasers, which consists of a regular “comb” of sharp lines. Such a controlled mode-locked laser is a “femtosecond optical frequency comb generator.” For a sufficiently broad comb, it is straightforward to de...
متن کاملResolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate
Mode-locked lasers have enabled some of the most precise measurements ever performed, from attosecond time-domain spectroscopy to metrology with frequency combs. However, such extreme precision belies the complexity of the underlying mode-locking dynamics. This complexity is particularly evident in the emergence of the mode-locked state, an intrinsically singular, non-repetitive transition. Man...
متن کاملAll-fibre photonic signal generator for attosecond timing and ultralow-noise microwave.
High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~10...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 37 17 شماره
صفحات -
تاریخ انتشار 2012